随着城市建设规模的不断扩大,建设用地越来越紧张,无论是在地上还是地下都要求建筑物的空间能最充分利用,使其结构设计出现了众多的体型上部载荷大小相差悬殊的高层建筑。相应的建筑物对沉降的要求也越来越高,对地基与基础的设计要求也越来越高。现以软弱地基的几种处理方法来加以分析研究。
软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其它高压缩性土层构成的地基,就是持力层为沙土,是粉质粘土等低压缩性土层,高压缩性土层。在软弱地基保持纯天然没有经过人工的处理的时候,软弱地基对于外界的冲击和振动具有一定的沉降。
软弱地基是一种不良地基,由于地质强度比较小、压缩性比较高和透水性很小等特性,因此在软土地基上修建建筑物必须重视地基的变形和稳定。在软弱土地基上的建筑物往往会出现地基强度和变形不能满足设计要求。
一、软地基定义
软土是自然历史、地理的产物,是随着气候、沉积环境的变化而形成的。一般是指在静水和缓慢流水环境中沉积,以黏粒为主并伴有微生物作用的近代沉积物。软土是一种呈软塑到流塑状态,其外观以灰色为主的细土粒,如淤泥和淤泥质土、泥炭土和沼泽土,以及其它高压缩性饱和黏性土、粉土等。其中淤泥和淤泥质土是软土的主要类型。
软弱地基在我们看来它是指基本上未经受过地形及地质变动,未受过荷载及地震动力等物理作用或土颗粒间的化学作用的软粘土、有机质土、饱和松砂土和淤泥质土等地层构成的地基。大部分是饱和的,其天然含水量大于液限,孔隙比大于1.0。当天然孔隙比大于1.5时,称为淤泥,当天然孔隙比大于1.0而小于1.5时,称为淤泥质土。软粘土的特点是天然含水量高,一般为35%~80%,天然孔隙比大,一般为1.0~2.0,抗剪强度低,不排水抗剪强度约在5kPa~25 kPa,压缩系数高,一般为a1-2=0.5Mpa-1~1.5 Mpa-1,最大可达到4.5Mpa-1,渗透系数小,一般约1×10-6㎝/s~1×10-8㎝/s。
1.1 场地
场地是指工程建设所直接占有并直接使用的有限面积的土地。场地范围内及其领近的地质环境都会直接影响着场地的稳定性。场地的概念是宏观的,它不仅代表着所划定的土地范围,还应扩大到涉及某种地质现象或工程地质问题所概括的地区。所以场地的概念不能机械理解为建筑占地面积,在地质条件复杂的地区,还应包括该面积在内的某个微地貌、地形和地质单元。场地的评价对工程的总体规划具有深远的实际意义,关系到工程的安全和工程造价。
1.2 地基
1.2.1 强度及稳定性的问题
当地基的抗剪强度不足以支撑上部结构的自重及外荷载时,地基就会产生局部或整体剪切破坏。它会影响建筑物的正常使用,甚至引起开裂或破坏。承载力较低的地基容易产生地基承载力不足问题而导致工程事故。土的抗剪强度不足除了会引起建筑物地基失效的问题外,还会引起其他一系列的岩土工程问题,如边坡失稳、基坑失稳、挡土墙失稳、隧道塌方等。
1.2.2 变形问题
当地基在上部结构的自重及外界荷载的作用下产生过大的变形,会影响建筑物的正常使用;当超过建筑物所能容许的不均匀的沉降时,结构可开裂。高压性土的地基容易产生变形问题。一些特殊土地基在大气环境改变时,由于自身物理力学特性的变化而往往会在上部结构荷载不变的情况下产生一些附加变形,如湿陷性黄土遇水湿陷、膨胀土的遇水膨胀和失水干缩、冻土的冻胀和融完、软土的扰动变形等。这些变形对建筑物的安全都是不利的。
二、软弱地基处理方法的分类、原理及适用范围
2.1 地基处理方法
地基处理是一项历史悠久的工程技术。随着现代建筑事业对地基处理的要求日益增高,许多新的地基处理技术也得到开发和应用,如近年来发展的强夯法、振冲法、真空预压法、高压喷射注浆法以及加筋法等已广泛用于工程实践。 地基處理技術的研究和推廣已成為土木工程中一項重要的課題。地基处理技术的研究和推广已成为地基处理技术的研究和推广已成为土木工程中一项重要的课题。
软弱地基的种类很多,按成因一般可分为人工填土类地基;海相、河流相和湖相沉积而成的含淤质粘土类地基;各种山前冲积、洪积相所形成的夹卵石、漂石的粘土类地基。复杂的成因造成了它们在物理力学性能上的复杂性,它们的共同特点是承载力低、压缩性高。目前对厚度较大的软弱地基一般采用各类钢筋混凝土桩进行处理,对含水量和孔隙比较大的软弱地基一般采用砂桩、石灰桩,化学灌浆或堆载预压等方法处理。各种处理方法都有较强的针对性,处理方法选择是否合理,直接影响到建筑物的设计是否安全和节约。
我国在引进了国外比较先进的软土地基处理方法的同时,逐步发展了符合我国国内具体工程地质条件的软土地基处理方法。从国外引进和发展了高压喷射注浆法、振冲法、强夯法、深层搅拌法、土工合成材料、强夯置换法、EPS超轻质填料法等许多地基处理技术。许多已经在我国得到应用的地基处理技术,如排水固结法、土桩和灰土桩法、砂桩法等也得到不断发展提高;在工程实践中还发展了许多新的地基处理技术,如真空预压法、锚杆静压桩法、孔内夯扩碎石桩法、低强度桩复合地基法、刚性桩复合地基法等。在地基处理方面我们已现在的施工工艺中以最常见以及最常用的几种来进行分类例如:
2.1.1 换填垫层法
用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。
2.1.2 强夯法
用于处理碎石土、砂土、低饱和度的粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。强夯置换法适用于高饱和度的粉土,软-流塑的粘性土等地基上对变形控制不严的工程,在设计前必须通过现场试验确定其适用性和处理效果。强夯法和强夯置换法主要用来提高土的强度,减少压缩性,改善土体抵抗振动液化能力和消除土的湿陷性。对饱和粘性土宜结合堆载预压法和垂直排水法使用。
2.1.3 SDDC(孔内深层超强夯法)
孔内深层超强夯法(SDDC)技术适用范围广,可适用于大厚度杂填土、湿陷性黄土、软弱土、液化土、风化岩、膨胀土、红粘土以及具有地下人防工事、古墓、岩溶土洞、硬夹层软硬不均等各种复杂疑难的地基处理。该技术可根据不同的地质情况和设计要求,就地取材,如:建筑碴土、工业无毒废料、素土、砂、毛石、砂卵石、粉煤灰、土夹石、灰土和混凝土等材料均可做成各种SDDC桩。大幅度降低工程造价,施工质量容易控制、地面振动小、施工噪音低、施工速度快;成桩直径0.6~3.0m,单桩处理面积1.0~14.0㎡,不受季节限制,同时能消纳大量建筑垃圾,可在城区或危房改造居民区施工等特点。
孔内深层超强夯法(SDDC)地基处理新技术,是先在地基内成孔,将强夯重锤放入孔内,边加料边强夯或分层填料后强夯。孔内深层超强夯法(SDDC)技术在第52届尤里卡世界发明博览会上获得了最高奖--尤里卡金奖,这也是中国地基处理技术到目前为止在国际上获得的唯一金奖。
孔内深层超强夯法(SDDC)技术与其它技术不同之处:是通过孔道将强夯引入到地基深处,用异型重锤对孔内填料自下而上分层进行高动能、超压强、强挤密的孔内深层超强夯作业,使孔内的填料沿竖向深层压密固结的同时对桩周土进行横向的强力挤密加固,针对不同的土质,采用不同的工艺,使桩体获得串珠状、扩大头和托盘状,有利于桩与桩间土的紧密咬合,增大相互之间的摩阻力,地基处理后整体刚度均匀,承载力可提高2~9倍;变形模量高,沉降变形小,不受地下水影响,地基处理深度可达50米以上。
2.1.4 砂石桩法
用于挤密松散砂土、粉土、粘性土、素填土、杂填土等地基,提高地基的承载力和降低压缩性,也可用于处理可液化地基。对饱和粘土地基上变形控制不严的工程也可采用砂石桩置换处理,使砂石桩与软粘土构成复合地基,加速软土的排水固结,提高地基承载力。
2.1.5 水泥粉煤灰碎石桩(CFG桩)法
用于处理粘性土、粉土、砂土和已自重固结的素填土等地基。对淤泥质土应根据地区经验或现场试验确定其适用性。基础和桩顶之间需设置一定厚度的褥垫层,保证桩、土共同承担荷载形成复合地基。该法适用于条基、独立基础、箱基、筏基,可用来提高地基承载力和减少变形。对可液化地基,可采用碎石桩和水泥粉煤灰碎石桩多桩型复合地基,达到消除地基土的液化和提高承载力的目的。
2.1.6 预压法
用于处理淤泥、淤泥质土、冲填土等饱和粘性土地基。按预压方法分为堆载预压法及真空预压法。堆载预压分塑料排水带或砂井地基堆载预压和天然地基堆载预压。当软土层厚度小于4m时,可采用天然地基堆载预压法处理,当软土层厚度超过4m时,应采用塑料排水带、砂井等竖向排水预压法处理。对真空预压工程,必须在地基内设置排水竖井。预压法主要用来解决地基的沉降及稳定问题。
2.1.7 置换及拌入法
置换及拌入法有换填垫层法、振冲置换法、高压喷射浆法、深层搅拌法、褥垫法等多种方法;采用砂、碎石等材料置换软弱土地基中部分软弱土体或在部分软弱土地基中掺入水泥、石灰或砂浆等形成加固体,与未被加固部分的土体一起形成复合地基,从而达到提高地基承载力减少沉降量的目的。
2.1.8 加筋法
加筋法有加筋土法、锚固法、树根桩法、低强度砼桩复合地基法、钢筋砼桩复合地基法等多种方法。通过在土层埋设强度较大的土工聚合物、拉筋、受力杆件等达到提高地基承载力,减小沉降,维持建筑物稳定。
在大部分的工程施工中在确定地基处理方案时,宜选取不同的多种方法进行比选。对复合地基而言,方案选择是针对不同土性、设计要求的承载力提高幅质、选取适宜的成桩工艺和增强体材料,保证文明施工、环保施工。
2.2 各种地基处理方法适用范围
2.2.1换填垫层法
换填垫层法常用于基坑面积宽大开挖方量较大的回填土方工程适用于处理浅层非饱和和软弱地基、湿陷性黄土地基、膨胀土地基、季节性冻土地基、素填土和杂填土地基。
2.2.2强夯法
夯实法适用于碎石土、砂土、素填土、杂填土、低饱和度的粉土和粘性土、和湿陷性黄土夯实置换适用于软弱土。
2.2.3 SDDC(孔内深层超强夯法)
孔内深层超强夯法(SDDC)适用范围广,可适用于大厚度杂填土、湿陷性黄土、软弱土、液化土、风化岩、膨胀土、红粘土以及具有地下人防工事、古墓、岩溶土洞、硬夹层软硬不均等各种复杂疑难的地基处理。
2.2.4砂石桩法
砂石桩法一般适用于杂填土和松软砂土,对于软土地基经试验证明加固有效时方可使用土桩、灰土桩、二灰桩挤密法一般适用于地下水位深度为5-10m的湿陷性黄土和人工填土石灰桩适用于软弱粘性土和杂填土。
2.2.5水泥粉煤灰碎石桩(CFG桩)法
水泥粉煤灰碎石桩(CFG桩)法适用于处理粘性上、粉土、砂土和已自重固结的素填土等地基。对淤泥质土应按当地经验或通过现场试验确定其适用性。就基础形式而言,既刁用于条形基础、独立基础,又可用于箱形基础、筏形基础。
2.2.6预压法
预压法适用于处理厚度较大的饱和软土和冲积土地基。
2.2.7置换及拌入法
置换及拌入法用于垫层法和开挖浅层地基处理;振冲置换法适用于软弱粘性土地基;高压喷射注浆法;适用于粘性土、冲填土、粉细砂、砂砾石等地基;深层搅拌法和石灰桩适用于软弱粘性土;褥垫法适用于地基软土层深浅不一等
2.2.8加筋法
加筋法土工聚合物适用于软弱地基,或用作反滤、排水和隔水材料;锚固技术适用于天然底层或人工填土;加筋土适用于人工填筑的砂性土;树根桩法适用于软弱粘性土、杂填土等。
三、固技术
3.1 地基基础的加固
应遵循“安全适用,经济合理,技术先进”的原则,同时还应考虑加固时施工的难易程度。常用的方法有扩大基础底面积法,其适用范围为刚性基础或扩展基础。锚杆静压桩法,其适用于淤泥、淤泥质土、粘性土、粉土和人工填土等地基土上。树根桩法,一般适用于淤泥质土、非粘土、粉土、砂土及人工填土等地基土上,作为基础加固或基坑边坡稳定加固之用。注浆加固法,一般适用于砂土、粉土、粘土、粘性土和人工填土等地基加固。
3.1.1 锚杆静压桩法
锚杆静压桩法用于高压缩性粘土层或砂性较轻的软粘土层,当桩须贯穿有一定厚度的砂性土夹层时,必须根据桩机的压桩力与终压力及土层的形状、厚度、密度、上下土层的力学指标、桩型、桩的构造、强度、桩截面规格大小与布桩形式、地下水位高低以及终压前的稳压时间与稳压次数等综合考虑其适用性。
3.1.2 树根桩法
树根桩法用于淤泥、淤泥质土、粘性土、粉土、砂土、碎石土及人工填土等地基土上既有建筑的修复和增层、古建筑的整修、地下铁道的穿越等加固工程。
3.1.3 注浆加固法
注浆加固是用液压、气压或电化学原理通过注浆管把浆液均匀地注入土层中,填充、渗透和挤密驱走土颗粒间的水分和气体,并填充、硬化后将土颗粒成一个整体形成一个强度大、压缩性低、抗渗性高和稳定性良好的新的土体,从而使地基得到加固,可防止或减少渗透和不均匀的沉降。
3.2 地基处理方法加固效果
软弱地基在进行施工组织的时候经过处理加固后使地基在组织施工的时候更可以有效和节省各类成本进行施工,也确保了各类施工工艺的安全性,方便性,大大减少在施工中由于软弱地基没有得到加固在组织施工出现的各类事故和一些不必要的麻烦。
地基处理是一项技术性很强的工作,合理的方案还需要落实到技术措施和施工质量的保证上,才能获得地基处理预期的效果,这不但要求认真制订技术措施的技术标准,保证施工质量,还要进行施工现场质量检验、试验和现场监测与控制,监视地基加固动态变化,控制地基的稳定性和变形的发展,检验加固的效果,确保地基方案顺利的实施。
随着具有中国特色的现代化的发展,规模宏大的工业与民用建筑、水利工程、环境工程、港口工程、高速铁路、高速公路、机场跑道、大型油罐基础工程等的兴建,不可避免的在不良的地基场地上建造,而且对地基质量的要求也将越来越高,现有的地基处理技术已经不能满足社会发展的需求。 地基处理技术将在原有的基础上有所改善,原来笨重的人工夯实转变为现行的机械操作,甚至发展为用化学药品来处理地基。旧事物在短时间内被新事物的发展所取代是社会发展的需要,同样地基处理技术也如此。由此可见地基处理技术的发展前景是远大和美好的,地基处理的新技术、新工艺也不断涌现。